Metabolic Response of “Candidatus Accumulibacter Phosphatis” Clade II C to Changes in Influent P/C Ratio
نویسندگان
چکیده
The objective of this study was to investigate the ability of a culture highly enriched with the polyphosphate-accumulating organism, "Candidatus Accumulibacter phosphatis" clade IIC, to adjust their metabolism to different phosphate availabilities. For this purpose the biomass was cultivated in a sequencing batch reactor with acetate and exposed to different phosphate/carbon influent ratios during six experimental phases. Activity tests were conducted to determine the anaerobic kinetic and stoichiometric parameters as well as the composition of the microbial community. Increasing influent phosphate concentrations led to increased poly-phosphate content and decreased glycogen content of the biomass. In response to higher biomass poly-phosphate content, the biomass showed higher specific phosphate release rates. Together with the phosphate release rates, acetate uptake rates also increased up to an optimal poly-phosphate/glycogen ratio of 0.3 P-mol/C-mol. At higher poly-phosphate/glycogen ratios (obtained at influent P/C ratios above 0.051 P-mol/C-mol), the acetate uptake rates started to decrease. The stoichiometry of the anaerobic conversions clearly demonstrated a metabolic shift from a glycogen dominated to a poly-phosphate dominated metabolism as the biomass poly-phosphate content increased. FISH and DGGE analyses confirmed that no significant changes occurred in the microbial community, suggesting that the changes in the biomass activity were due to different metabolic behavior, allowing the organisms to proliferate under conditions with fluctuating phosphate levels.
منابع مشابه
Dominant and novel clades of Candidatus Accumulibacter phosphatis in 18 globally distributed full-scale wastewater treatment plants
Here we employed quantitative real-time PCR (qPCR) assays for polyphosphate kinase 1 (ppk1) and 16S rRNA genes to assess relative abundances of dominant clades of Candidatus Accumulibacter phosphatis (referred to Accumulibacter) in 18 globally distributed full-scale wastewater treatment plants (WWTPs) from six countries. Accumulibacter were not only detected in the 6 WWTPs performing biological...
متن کاملDominant Candidatus Accumulibacter phosphatis Enriched in Response to Phosphate Concentrations in EBPR Process
Candidatus Accumulibacter phosphatis (Accumulibacter), which plays an important role in enhanced biological phosphorus removal in wastewater treatment plants, is phylogenetically classified into two major types (Types I and II). Phosphate concentrations affect the Accumulibacter community of the biomass enriched in treatment plants. Therefore, in the present study, Accumulibacter enrichments we...
متن کاملHigh-temperature EBPR process: the performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus "Accumulibacter phosphatis".
The applicability of the enhanced biological phosphorus removal (EBPR) process for the removal of phosphorus in warm climates is uncertain due to frequent reports of EBPR deterioration at temperature higher than 25 °C. Nevertheless, a recent report on a stable and efficient EBPR process at 28 °C has inspired the present study to examine the performance of EBPR at 24 °C-32 °C, as well as the PAO...
متن کاملFunctionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States.
The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of v...
متن کاملMetaproteomics Provides Functional Insight into Activated Sludge Wastewater Treatment
BACKGROUND Through identification of highly expressed proteins from a mixed culture activated sludge system this study provides functional evidence of microbial transformations important for enhanced biological phosphorus removal (EBPR). METHODOLOGY/PRINCIPAL FINDINGS A laboratory-scale sequencing batch reactor was successfully operated for different levels of EBPR, removing around 25, 40 and...
متن کامل